产品承认书

PRODUCT SPECIFICATION

产品型号: BT131蓝牙软件板

客户名称: 客户型号:

配置	参数	配置	参数
串数	6~16S	RS485接口	3PIN, 450mm
适用电池	三元锂、磷酸铁锂	采样排线	18P带扣,600mm
持续放电电流	30A	蓝牙通信	支持
芯片方案	中颖集成方案	放电开关	支持【 需要软件匹配支持 】
均衡方式	自动均衡,电阻放电方式	电池温度检测	2路NTC
电流积分	支持1000A以内检测	显示屏	支持, RS485屏
预放电功能	支持,防打火, 可选配 【 电池带显示屏不支持此功能 】		

后续描述与配置表有矛盾的以上面配置表为准

编 制	审 核	批 准
PREPARED BY	CHECKED BY	APPROVED BY
付佳彬		

客户确认栏 CUSTOMER APPROVED

确认意见 INSPEC.RESULT:

客户签章:

APPROVAL SIGNET

日期 Date:

深圳市明唐新能源技术有限公司

地 址: 深圳市南山区粤海街道麻岭社区深南大道9988号大族科技中心1501室

TEL: 400-0568266

注:客户收到样品以及规格书后,请及时回复,如在7天之内无回复,我司将视客户已承认此规格书中的参数以及送样样品。 规格书中的图片为通用机型的图片,可能与送样样品有一定的差异;经贵公司确认生效,此规格书仅限我司及贵公司内部使用, 未经我司许可不得给予第三方,且我司拥有对此规格书的最终解释权。

目 录

一、	综述	3
=,	·····································	3
	电气参数 (Ta = 25 ℃.)	
	3.1、 额定规格参数	
	3.2、 基本功能参数	5
	3.3、 低功耗休眠及唤醒	7
	3.4、 显示屏功能	7
四、	通信说明	7
	4.1、 RS485通信	7
五、	BMS保护板尺寸图	8
六、	参考图及安装说明	
	6.1、 保护板元件视图	9
	6.2、 保护板相关接口定义	10
	6.3、 采样线接线定义	
	6.4、 安装连接说明	12
	6.5、 保护板激活开机说明	12
	6.6、温度传感器安装注意事项	
	法四个亲市压	
七、	使用注意事项	14
	世用注息争坝主要元器件清单	

一、综述

本规格书适用于深圳市明唐新能源技术有限公司的锂电池保护板,本产品严格满足ROHS标准。

随着锂电池的广泛应用,对电池管理系统提出了高性能、高可靠性及高性价比等要求。BMS电池系统俗称之为电池管家,BMS实时采集、处理、存储电池组运行过程中的重要信息,与外部设备如整车控制器交换信息,解决锂电池系统中安全性、可用性、易用性、使用寿命等关键问题。主要作用是为了能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的实时状态。

本BMS保护板,采用集成化的设计,将采集、管理、通信等功能集成于一体,保证动力电池安全可靠、高效及长寿命的运行。

二、产品功能特性

- 具有单体电压、总体电压检测,过充、过放报警及保护功能。
- 具有充电、放电过流报警及保护功能。
- 具有电芯、MOS 温度实时检测功能;电芯高温、低温报警及保护功能; MOS 高温报警及保护功能。
- 具有对输出短路的检测及保护功能。
- 具有自动均衡功能,可以在充电时对不均衡的电芯进行均衡。
- RS485 通信,采用隔离通信方式,根据用户使用需要来匹配。
- 电流积分功能【库仑计】。
- SOC 计量:采用电流积分与开路电压算法相结合。
- 支持单体电压掉线检测、单体电压检测、总电压检测。
- 具有多种休眠及唤醒方式。

三、电气参数 (Ta = 25 ℃.)

3.1、 额定规格参数

\ \	imits CI	规格			₩ /÷:	Heta:Min
注	详细项目		典型值	最大值	单位	其它说明
充印	电电流	-	30	-	Α	
放晒	电电流	-	30	-	Α	
工化	作电流	-	20	25	mA	保护板工作状态
待相	机电流	-	10	15	mA	保护板待机状态
低功耗模式	1 电流【关机】	-	10	15	μΑ	保护板关机状态
工作环境	工作温度	-20	-	+70	°C	正常工作温度范围
工作小块	工作湿度	0%	-	90%	RH	湿度低于90%,无凝结
存储环境	存储温度	-40	-	+85	°C	正常存储温度范围
行油小块	存储湿度	0%	-	90%	RH	湿度低于90%,无凝结
电流积分	SOC估算精度			<5%		
电加热力	电流检测	采	样频率<25	50mS,精度	5%	
RS4	85接口		支	持1路		
单体电点	玉掉线检测		3	支持		
单体印	电压检测	支	z持, 检测落	范围1.0V~5.0		
总体码	电压检测		检测范	围0-100V		
电			'三元锂 粦酸铁锂	参数可设置		
电池组	6-16串			电池串数可选择 铁锂最低可支持7串		

注:长期超载工作,会损坏保护板,减少其使用寿命。

3.2、 基本功能参数(注:以下参数除特殊注明以外,25℃环境温度下测试)

功	———————— 能指标项目	建议设置参数	设置说明	备注
	单体过充保护电压	三元4.25V / 铁锂3.65V	可设	±20mV
过充保护	单体过充保护延时时间	1000mS	不可设	±500mS
(单串电池)	单体过充保护解除电压	三元4.15V / 铁锂3.5V	可设	±20mV
	单体过充保护解除	单体电压下降到恢复点或者放电,自	动恢复	/
	单体过放保护电压	三元2.75V / 铁锂2.5V	可设	±20mV
过放保护	单体过放保护延时时间	1500mS	不可设	±500mS
(单串电池)	单体过放保护解除电压	三元3.0V / 铁锂2.9V	可设	±20mV
	过放保护恢复方式	接入充电器或者单体电压上升到恢复	点	/
	总体过充保护电压	三元电池组串数 * 4.225V 铁锂电池组串数 * 3.6V	可设	±1V
<u></u>	总体过充保护延时时间	1000mS	不可设	±500mS
总体过充保护 	总体过充保护解除电压	三元电池组串数 * 4.1V 铁锂电池组串数 * 3.5V	可设	±1V
	总体过充保护解除	总体电压下降到恢复点或者放电,自	动恢复	/
	总体过放保护电压	三元电池组串数 * 2.8V 铁锂电池组串数 * 2.5V	可设	±1V
**	总体过放保护延时时间	1500mS	不可设	±500mS
总体过放保护	总体过放保护解除电压	三元电池组串数 * 3.1V 铁锂电池组串数 * 2.9V	可设	±1V
	充电解除	接入充电器或者总体电压上升到恢复	点	/
	均衡开启电压	三元3.9V / 铁锂3.3V	可设	±20mV
均衡功能	均衡开启压差	>20mV	不可设	/
	均衡电流	30~80 mA	不可设	/
电芯压差保护	单节电芯压差保护电压	>1000mV	可设	±20mV
内阻	放电回路内阻	<40 mΩ	/	/
	低电量告警	SOC < 10%,充电时不告警	可设	/
容量默认设置	标称容量	40AH , 需要设置	可设	/
口至河(外以日	低电模式	选择设置,建议采用隐藏电量方式 详细说明参考低电模式说明	可设	/

功	功能指标项目		建议设置参数	女	设置说明	备注
	短路保护电流		400A±15%		不可设	/
/ /- I \	短路保护延时时间	200~800μ S			不可设	/
短路保护	短路保护解除方式		;鉴于短路 客户做短路	大,避免危	/	
	充电过流保护	电流值	持续时间	恢复延时	1	V
	充电过流3	15A ±2A	1205 ±2S	30S ±2S	可设	默认0.5C
充电过流保护	充电过流2	21A ±2A	30S ±2S	30S ±2S	可设	默认0.7C
	充电过流1	27A ±2A	10S ±2S	30S ±2S	可设	默认0.9C
	充电过流保护解除	延时后自动物	·····································			/
	放电过流保护	电流值	持续时间	恢复延时	/	/
	放电过流3	33A ±2A	60S ±2S	30S ±2S	可设	默认1.1C
放电过流保护	放电过流2	37.5A ±2A	10S±2S	30S ±2S	可设	默认1.25C
	放电过流1	45A ±2A	5S ±2S	30S ±2S	可设	默认1.5C
	放电过流保护解除	延时后自动物	·····································	17	/	
	MOS高温保护温度		75°C		可设	±3°C
MOC温度但拉	MOS高温保护解除温度		60°C	7	可设	±3°C
MOS温度保护	MOS低温保护温度		-20°C		可设	±3°C
	MOS低温保护解除温度		-15°C		可设	±3°C
	充电高温保护温度		60°C	N N	可设	±4°C
	充电高温保护解除温度		50°C	XX	可设	±4°C
	充电低温保护温度		-15°C		可设	±4°C
内 北 海 克 / 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2	充电低温保护解除温度		-10°C		可设	±4°C
电芯温度保护	放电高温保护温度		65°C		可设	±4°C
	放电高温保护解除温度		55°C		可设	±4°C
	放电低温保护温度		-20°C		可设	±4°C
	放电低温保护解除温度	1	-15°C		可设	±4°C

说明:以上数据均为25℃环境下测试,若不在25℃测试,测试数据可能会引起偏差。 BMS保护参数都具有上述功能,参数可能会有所变动更新,改动不做另行通知,请以实际为准。所有保护参数如需修改,需向保护板厂家提出申请。

3.3、 低功耗休眠及唤醒

- 3.4.1 普通休眠模式及唤醒
- ◆ 普通休眠:
- 1、无485通讯、CAN通讯、一线通通讯;
- 2、除单节过压保护、总压过压保护外,无其它保护标志;
- 3、最小单节电压大于 2.1 V (铁锂) 或者 2.5 V (三元);
- 4、充电或者放电电流小于100mA;
- 以上条件所有都满足时开始计算,约延时60-300秒进入普通休眠。
- ◆ 唤醒方式:
- 1、BT通讯唤醒;
- 2、开关机接口唤醒;
- 3、充电电流或者放电电流大于200mA, 3-5秒;
- 以上条件满足其中一个,可唤醒普通休眠。
- 3.4.2 深度睡眠模式及唤醒
- ◆ 深度休眠:

方式一: 电池电压偏低时【电池单串电压铁锂<2.1V、三元<2.5V】,无充电电流或充电电流小于200mA,保护板约延时60-300秒关机进入深度睡眠模式,防止将电量耗尽损坏电池。

方式二: 需要较长时间运输或存储时, 也可以手动下发关机指令, 让保护板关机进入深度睡眠模式, 保留电量。

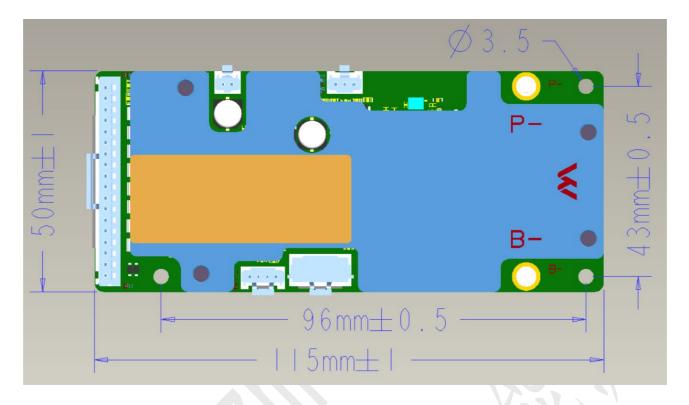
- ◆ 唤醒方式:
- 1、充电器激活,充电器输电压比电池电压高2V,脉冲输出1-3s可唤醒。【注:对于需检测到电池电压才能给电池充电的充电器,本产品关机后将无法充电激活,需带充电激活功能的或者默认输出充电电压的充电器。】
 - 2、使用开关机接口唤醒

以上条件满足其中一个,可唤醒深度休眠。

3.4、显示屏功能

本智能软件板使用RS485接口或CAN接口来支持屏幕显示电池组状态,电池电压、电流、单体电压、温度、SOC等相关电池信息。

四、通信说明


4.1、RS485通信

本产品支持通过485通讯进行SOC数据上报,与控制器或仪表进行对接,可实现精准的电量显示。通讯协议可根据客户要求进行定制。

可以通过RS485接口与上位机进行通讯,从而在上位机端查看电池的各种信息,包括电池电压、电流、温度、充电放电状态、SOC、电池信息等。

默认波特率为9600bps。通过连接上位机可支持升级程序,支持保护参数更改及保护板关机设置等。

五、BMS保护板尺寸图

保护板尺寸: 115*50*17【固定孔位中心尺寸96*43,固定孔位螺丝M3】

六、参考图及安装说明

6.1、 保护板元件视图

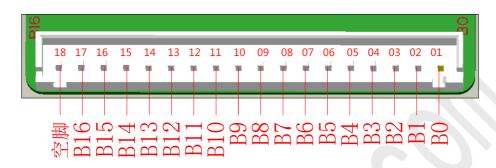
BT131接插件详细型号说明						
接口功能 接口型号 接口功能 接口型号						
开关机接口	HY2. 0带扣-2P	RS485接口	HY2. 0带扣-3P			
电压采样线	XHB2.5带扣-18P	温度线(2路)	HY2. 0带扣-4P			
扩展接口	PHB2.0双排带扣-2x6p					

重要说明:电池采样线材、温度线、RS485通讯线等插接的线材,装好后要打胶固定,防止电池使用过程中震动脱落。

以上图片仅供参考,实物以配置表或封样为准。

相关接口功能说明【电池箱外壳需要开孔增加相应的按钮及接线处理】:

■ 开关机接口: 方案可选


方案一、接自复位开关。保护板关机状态下,按下2秒可以开机,保护板开机状态下,长按开关2-3秒,延时5秒左右关机。——【如果需要使用此功能,软件需要匹配支持】

方案一、接自锁开关。保护板关机状态下,闭合开关可以开机;保护板开机状态下,闭合开关可以放电,断开不能放电。——【如果需要使用此功能,软件需要匹配支持】

6.2、 保护板相关接口定义

NO.	接插件示意图及功能说明	引脚	定义说明	备注
	电芯采样插座: XHB2.5带扣-18P	PIN 1	В0	
		PIN 2	B1+	
		PIN 3	B2+	
		PIN 4	B3+	
		PIN 5	B4+	
		PIN 6	B5+	
		PIN 7	B6+	
		PIN 8	B7+	
1	99	PIN9	B8+	
	18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01	PIN10	B9+	
		PIN11	B10+	
		PIN12	B11+	
		PIN13	B12+	
		PIN14	B13+	
		PIN15	B14+	
		PIN16	B15+	
		PIN17	B16+	
		PIN18	空脚	
	温度采集2路: HY2.0带扣-4P NTC规格: R25=10KΩ±1%,	PIN 1	NTC1-	
2	B25/85=3435K±1%	PIN 2	NTC1+	
2		PIN 3	NTC2-	
		PIN 4	NTC2+	
3	开关机接口: HY2.0带扣-2P 开关类型: 自复位开关 1	PIN 1	SW-	黑色
3	注: 软件需要匹配支持	PIN 2	SW+	白色
	RS485接口: HY2.0带扣-3P	PIN 1	空脚	/
4	1 2 3	PIN 2	RS485—A (正)	红色
		PIN 3	RS485—B (负)	黑色

6.3、 采样线接线定义

★ 并线方式列表说明

BMS端					电	池	端				
定义	16S	15S	14S	13S	12S	115	105	95	85	75	6S
В0-	В0-	В0-	В0-	В0-	В0-	В0-	В0-	В0-	В0-	В0-	В0-
B1+	B1+	B1+	B1+	B1+	B1+	B1+	B1+	B1+	B1+	B1+	B1+
B2+	B2+	B2+	B2+	B2+	B2+	B2+	B2+	B2+	B2+	B2+	B2+
B3+	B3+	B3+	B3+	B3+	B3+	B3+	B3+	B3+	B3+	B3+	B3+
B4+	B4+	B4+	B4+	B4+	B4+	B4+	B4+	B4+	B4+	B4+	B4+
B5+	B5+	B5+	B5+	B5+	B5+	B5+	B5+	B5+	B5+	B5+	B5+
B6+	B6+	B6+	B6+	B6+	B6+	B6+	B6+	B6+	B6+	B6+	B6+
B7+	B7+	B7+	B7+	B7+	B7+	B7+	B7+	B7+	B7+	B7+	B6+
B8+	B8+	B8+	B8+	B8+	B8+	B8+	B8+	B8+	B8+	B7+	B6+
B9+	B9+	B9+	B9+	B9+	B9+	B9+	B9+	B9+	B8+	B7+	B6+
B10+	B10+	B10+	B10+	B10+	B10+	B10+	B10+	B9+	B8+	B7+	B6+
B11+	B11+	B11+	B11+	B11+	B11+	B11+	B10+	B9+	B8+	B7+	B6+
B12+	B12+	B12+	B12+	B12+	B12+	B11+	B10+	B9+	B8+	B7+	B6+
B13+	B13+	B13+	B13+	B13+	B12+	B11+	B10+	B9+	B8+	B7+	B6+
B14+	B14+	B14+	B14+	B13+	B12+	B11+	B10+	B9+	B8+	B7+	B6+
B15+	B15+	B15+	B14+	B13+	B12+	B11+	B10+	B9+	B8+	B7+	B6+
B16+	B16+	B15+	B14+	B13+	B12+	B11+	B10+	B9+	B8+	B7+	B6+

注: 颜色区域表示多个电压采集排线并接在一起

6.4、 安装连接说明

警告: 把保护板连接至电芯,或从电池组拆下保护板时,必须遵守以下连接顺序与规定;如果不按要求的顺序作业,会 损坏保护板的元器件,从而导致保护板不能保护电芯,造成严重的后果。

A、连接保护板的步骤

准备工作: 先把采样排线连接在电池组电芯上, 检查排线连接正确【切记: 不能把排线插在保护板上再一根一根连接在电池组电芯上】

- 1) 连接电池组的负极B-;
- 2) 连接输出负载的负极P-;
- 3) 连接电池组的采样排线; (先插低压排线【带黑色线材的】, 再插高压排线【带红色线材的】)
- 4) 所有连接线安装好,再插入充电器激活保护板开机,确认电池总电压与保护板输出电压相等;

B、断开保护板的步骤

重点确认

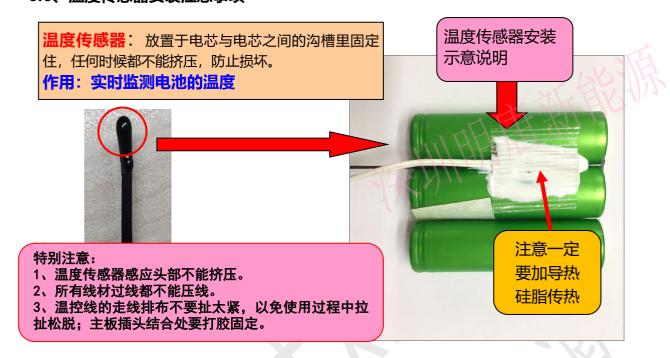
- 1) 断开负载或者充电器;
- 2) 拔下电池组的采样排线; (先拔高压排线【带红色线材的】,再拔低压排线【带黑色线材的】)
- 3) 断开电池组负极的B-连接线;

特别说明:在此环节中要注意静电的防护。特别要注意生产的烙铁漏电问题。

6.5、 保护板激活开机说明

1、新装电池包

首先保护板需要按照上面的对应串数接线图,正确接好所有线,确认OK,新装的电池包保护板接口外露的,可以使用 开机唤醒方式激活保护板开机,板上红色指示灯闪亮,说明保护板开机OK。


2、组装完成封箱的电池组

BMS保护板在电芯电压低于保护值或者下发关机指令,进入关机状态后,需要采用充电的方式【充电电流>1A】激活保护板开机才能正常使用。【注:对于需检测到电池电压才能给电池充电的充电器,本产品关机后将无法充电激活,需带充电激活功能的或者默认输出充电电压的充电器。】

保护板开机成功后,可以使用上位机程序、手机APP、电脑端平台等确认保护板运行情况。

【说明:需要较长时间运输或者存储时,可以下发关机指令,让保护板关机进入低功耗模式,投 入使用前需充电激活保护板开机才能正常使用】

6.6、温度传感器安装注意事项

■ 安装重点注意事项:

为防止B+与P-短路造成充电起火,建议客户在电池箱外B+上面增加过电流保险丝,起到保护作用。

■ 下表为软硅胶线导线线径选择参考:

线号	截面积
14AWG	2.0mm ²
12AWG	3.4mm ²
10AWG	5.3mm ²
8AWG	8.3mm ²
7AWG	12mm²
6AWG	16mm²
4AWG	25mm²
3AWG	35mm²
2AWG	50mm²
	14AWG 12AWG 10AWG 8AWG 7AWG 6AWG 4AWG 3AWG

※ 注意: 一定要根据实际放电电流选择相对应的线材,线径不能偏小,否则放电过程中易造成保护板温度过高,从而影响保护板的使用性能。

七、使用注意事项

- 安装保护板之前,电池一定要匹配好,每节电池电压相差低于0.05V,内阻相差低于5mΩ,容量相差低于30mAh。
- 初次连接保护板,电池电压不要太高也不要太低,铁锂电池在2.8到3.4V之间,聚合物电池在3V到4V之间。电池电压太高会触发保护,导致保护板无法正常工作。如果电池已经充满,请放低至要求电压后再连接保护板。
- 保护板B0对应的那条排线为接线的第一条排线(线材为黑色,接B-),第2根线(线材为白色)连接第1串电池正极,后面低次连接每一串正极,直到最后一串B+(线材为红色,接B+)。焊排线时排线切不可插在保护板上面去焊接。接线一定要按照顺序去接,排线接错,可能会导致保护板烧坏和无法正常工作。
- 排线接好后,插头不要直接插入,要测试插头背面每2个相邻金属端子间的电压,注意确认每串电池电压相差要低于 0.05V。
- 15串以上的保护板,在接好排线的情况下,请注意保护板的两个排线插头绝对不可以插反,插反会直接烧板;排线是先插有 B-黑色线材的低压排线,再插另一个有B+红色线材的高压排线。
- 保护板接好线之后,电池总电压与保护板输出电压相等,才代表接线正确,此时才可以进行充放电使用。
- 使用中注意引线头、电烙铁、锡渣等不要碰到电路板上的元器件,否则易损坏本保护板。
- 焊接电池引线时,一定不可有错接或反接。如果确认已接错,这块电路板可能已损坏,需要重新测试合格后才可使用。
- 装配时保护板不要直接接触到电芯表面,以免损坏电芯。装配要牢固可靠。
- 保护板和电池组组装作业时,勿将散热铝板靠近电芯表面,否则热量会传递给电芯,影响电池组安全。
- 将电池组和保护板组合好以后,首次上电如发现无电压输出或充不进电,请检查接线是否正确。
- 在测试、安装、使用、接触该保护板时,需做好相应的防静电措施。
- 在对装好保护板的电池组进行充放电测试时,请不要使用电池老化柜对电池组各节电池电压进行测量,否则有可能损坏保护 板和电池。
- 本保护板没有0V充电功能,电池一旦出现0V的情况下,电池将严重退化直至损坏,为了不损坏电池,用户在长期(电池组容量大于2AH,储存超过3个月)不使用时请定期充电补充电量,在使用过程中放电保护后,须在12小时内及时充电,防止电池因自耗电而放电至0V。
- 本保护板未配置反充电保护功能,使用时不可将充电输入反接,否则可能损坏保护板和电池。
- 请使用符合本规格书规定的充电器,如使用高于充电口最高可承受的直流电压的充电器,易造成保护板损坏,充电器应优先选择具备充电电流末端涓流关闭功能的产品(双保险)。注意不具备涓流关闭功能的充电器是为铅酸电池设计的,不适合锂电池使用。对于需检测到电池电压才能给电池充电的充电器,本产品欠压保护后将无法进行充电,需带充电激活功能的或者默认输出充电电压的充电器。
- 产品使用过程中一定要遵循设计参数及使用条件,不得超过本规格书中的值;如违反本规格书,易损坏保护板,进而损坏电 池组。
- 使用过程中如出现异常情况,请立即停止使用,送回原厂或请专业维修人员进行维修。
- 禁止将两个及两个以上的保护板串联或并联使用。
- 本保护板已经做了大量的可靠性试验,可靠性远远高于市面上的一般保护板,但为尽可能的减少事故的发生,请使用合格的 电芯。
- 电池组容量和保护板持续放电电流之间的关系:

建议电池组容量多少安时,就选用持续放电电流为多少安的保护板。(例如:50AH的电池组要选择持续放电电流至少为 50A的保护板)

注:长期超载工作,会损坏保护板,减少其使用寿命。

八、主要元器件清单

序号	类型	名称
1	保护IC	SH367309
2	充电MOS管	BLP021N10
3	放电MOS管	BLP021N10

请客户注意:我司各型号保护板在批量出货过程中,不同批次的订单我司有可能更换不同品牌不同型号的 MOS 管,但是前提是在能满足上述性能指标的情况下而做出的更改。

九、产品修订记录表

版本 Revision	变更内容 Modified Content	责任人 Principle	日期Date	标记Mark	备注Note
V1.0	首次发布	FJB	20250208) ////
				I, V	
	S				
			1000		
		<		3	